Versuch R2: Drehzahlregelung

Name	Datum	Testat

Es wird ein Regelkreis untersucht, dessen Strecke sich näherungsweise wie ein Verzögerungsglied 1. Ordnung verhält. Der PID-Regler ist als PI-Regler geschaltet. Den Ablauf der Messungen steuert das Programm *Drehzahl*, realisiert in der Entwicklungsumgebung *LabView*.

Vorbereitung

- 1. Verwenden Sie $K_S = 0.22$ und $T_S = 1.8$ sec als Streckenparameter. Berechnen und skizzieren Sie die
 - a) Übergangsfunktion,
 - b) Ortskurve und
 - c) Frequenzkennlinien der Strecke.
- 2. Bestimmen Sie die charakteristische Gleichung des geschlossenen Regelkreises unter Verwendung eines PI-Reglers und der obigen Streckenparameter.
- 3. Legen Sie die Reglerparameter K_P und T_N mit Hilfe der charakteristischen Gleichung so fest, dass die Kennkreisfrequenz und der Dämpfungsgrad des geschlossenen Kreises folgende Werte aufweist:
 - a) $\omega_0 = 1.3 \text{ sec}^{-1}$ D = 0.5. b) $\omega_0 = 0.9 \text{ sec}^{-1}$ D = 0.7.
- 4. Leiten Sie allgemein die Führungs- und Störübergangsfunktion für den geschlossenen Regelkreis, der aus einem solchen PT₁-Element (=Verzögerungsglied 1. Ordnung) sowie einem PI-Regler aufgebaut ist, her.
- 5. Setzen Sie in die Führungs- und Störübergangsfunktion die unter 3. ermittelten Reglerparameter ein und zeichnen die die resultierenden Übergangsfunktionen.

Durchführung

Schalten Sie den Funktionsgenerator vor dem PC ein. Wenn der PC hochgefahren ist, geben Sie auf der DOS-Ebene den Befehl win ein. Loggen Sie sich ein, wobei das Password gleich dem Login-Namen ist. Starten Sie das Programm Drehzahl und beachten Sie die Hinweise.

Sie haben nach dem Einloggen die Möglichkeit im Zeit- oder Frequenzbereich zu arbeiten. Wählen Sie entsprechend den Aufgabenstellung. Der Funktionsgenerator wird in beiden Fällen vom PC aus bedient.

Die Strecke ist im strengen Sinne nicht linear. Somit ist es nur möglich, die elektronische Nachbildung (PT1-Element) für bestimmte Arbeitspunkte und Stellsignalamplituden in eine gute Übereinstimmung mit dem dynamischen Verhalten der Strecke zu bringen.

Analyse der Strecke im Zeitbereich:

Bestimmen Sie experimentell die Streckendaten K_S und T_S bei Aufschaltung eines Stellgrößensprungs gemäßt Abbildung 1. Verwenden Sie dabei Parameter u₀ und u₁ aus Tabelle 1.

Abb. 1: Aufzuschaltender Stellgrößensprung.

Tab. 1: Einzustellende Parameter.

U1

Führen Sie mit den jeweils einzustellenden Werten für u_0 und u_1 eine *Onlinemessung* durch; sowohl ohne Last als auch mit Last. Drucken Sie die Ergebnisse jeder einzelnen Messung aus und bestimmen Sie die Streckenparameter K_S, T_S für die Fälle i) bis iii) im Last- bzw. lastfreien Betrieb.

Die Skalierung der u-Achse lässt sich durch Ändern der Werte am Skalenende anpassen. Die Zeitskalierung wird in Abhängigkeit der eingestellten Frequenz automatisch gesetzt.

Unterbrechen Sie vor dem Drucken jeweils die Onlinemessung.

Stellen Sie die aus den jeweiligen Messungen ermittelten Streckenparameter K_S , T_S bei der Nachbildung des PT₁-Elements mit Hilfe der Potentiometer am Front-Panel ein; dabei hilft die Tabelle 2. Überprüfen Sie die Einstellung jeweils mit einer Onlinemessung und den entsprechenden Werten u_0 und u_1 . Fahren Sie für jede einzelne eingestellte sowie überprüfte Lösung direkt mit der Analyse im Frequenzbereich fort.

Analyse der Streckennachbildung im Frequenzbereich:

Zum Vergleich von Strecke und Nachbildung im *Frequenzbereich* nutzen Sie die eingestellten und überprüften Streckendaten beim PT₁-Element. Setzen Sie das selbsttätige Messen des Frequenzgangs in Gang und beobachten Sie den Ablauf. Vergleichen Sie die Ortskurven sowie Amplituden- und Phasengänge.

Analyse der geschlossenen Kreises im Zeitbereich:

Schließen Sie den Regelkreis, zeichnen Sie sowohl die Stell- als auch die Regelgröße als Antworten auf einen Führungssprung und einen Störsprung auf.

Führen Sie diesen Schritt mit der Strecke sowie der Streckennachbildung durch; jeweils mit den beiden in der Vorbereitung ermittelten Reglereinstellungen.

Prüfen Sie auf Übereinstimmung mit den in der Vorbereitung rechnerisch bestimmten Übergangsfunktionen.

Parameter	K _S		T _S / sec		
Anzeige *)	0	1	0	1	
Eingestellter Wert	0,2	1,5	1,0	10,0	
Tab. 2: Kalibrierung der Potentiometer der Nachbildung.					

*) Die Ziffer im Fenster hat den Stellenwert 10⁻¹. Die Messbereichsumschaltung ist auf den eingestellten, nicht auf den angezeigten Wert anzuwenden.